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I. INTRODUCTION 

A. General Statement 

The principal functions of a power system are to convert energy from 

various forms to electric energy and to transmit this energy to consumers in 

diversified areas. The smooth flow of energy to all parts of a power sys­

tem is a fundamental requirement. To satisfy this requirement, it is 

desirable that the power generation units he properly controlled so that the 

production and consumption of energy can be maintained in equilibrium at all 

times. 

At the present time, the majority of the electric power generation 

units are thermal power plants. Although these plants are subject to fre­

quent adjustments in response to load variations, the control of thermal 

power plants has not always been adequate (4); the control of the power 

plant boilers is generally accomplished by a number of independent analog 

or direct digital control (DDC) devices designed on a single-input and 

single-output basis. When an error is detected from a certain variable, 

the corresponding control device starts to act. This will cause error to 

other variables, and the other related control devices start to act. The 

control devices will adjust to each other until the disturbances subside. 

This kind of control is very slow and ineffective. For a multiple-input 

and multiple-output system, it is desirable to have multivariable control 

to produce fast and effective control action under specified criteria. 

In this research a model for a thermal power plant boiler of forced 

circulation is developed. The model is Intended for use in multivariable 

control studies on boilers for the following purposes; 
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a) for automated control of steam power generation, and 

b) to minimize fluctuations in boiler pressure and temperature caused 

by load changes and control actions. 

B. Modeling Approaches for a Boiler 

A boiler unit is a distributed system involving mainly fluid flow and 

heat transfer processes. The fluid flow path of the boiler in connection 

with the turbine is shown in Fig. 1. The field equations describing these 

physical processes are generally in the form of nonlinear partial differen­

tial equations. Because of the complexity in boiler geometries and exis­

tence of heat capacitances which cause thermal delays, the physical phenom­

ena in a boiler are further complicated. It is very difficult to represent 

the field equations for boiler system dynamics and to obtain solutions or 

to simulate them on computers. Some alternative modeling approaches have 

been considered by different boiler model investigators. 

1. Physical approach 

One method is to make some simplifying assumptions on the physical 

processes so that the process can be described by lumped equations. The 

heat transfer processes are represented by empirical equations. The equa­

tion coefficients are then determined from the physical data of the boiler. 

The resultant model equations will InrinHe tinnlinear differential 

equations and nonlinear algebraic equations. Since it is very difficult to 

design control systems for nonlinear systems, these equations are usually 

linearized with respect to steady-state operating points. After the 

mathematical linearization the boiler dynamics are then represented by a 
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Fig. 1. Fluid-flow path for a typical drum-type boiler and single reheat turbine. 
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set of linear differential equations and linear algebraic equations. The 

model constants are generally computed from boiler design data and experi­

mentally tested boiler operating constants. 

Chien, Ergin, Ling, and Lee (5) studied the dynamics of a boiler and 

described analytically the development of a linear dynamic model for a 

boiler with this approach. This paper is the first publication which gives 

a comprehensive analysis of a boiler system. The boiler considered was a 

drum-type, oil fired naval unit with natural circulation. The boiler was 

divided into four sections in the analysis: 

1) superheater. 

2) downcomer-riser loop, 

3) drum, and 

4) gas path. 

The important simplifying assumptions made on the boiler processes in 

the development of the model equations are the following (3): 

a) vapor and liquid velocities in the upriser are identical, 

b) heat-transfer rate to boiling liquid from the waterwall tube is 

proportional to the cube of the temperature difference between the 

wall and the liquid-vapor mixture (empirical equation), 

c) quality is constant throughout the upriser, 

d) temperature of liquid-vapor mixture in the upriser is always the 

same as the saturation temperature corresponding to drum pressure, 

e) downcomer liquid temperature is the same as the drum liquid temper­

ature. 
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f) there is no temperature gradient in the vapor phase in the drum 

and the temperature is always the saturation temperature corre­

sponding to drum pressure, 

g) liquid phase in the drum has no temperature gradient except through 

a very thin layer at the liquid surface, 

h) evaporation or condensation rate in the drum is proportional to the 

difference of liquid and saturation temperatures, 

i) liquid-level changes due to bubble formation in the drum are 

neglected, 

j) the effect of the economizer on the overall system dynamics is 

neglected, and the feedwater temperature is assumed constant, 

k) the air-fuel ratio is assumed constant, 

1) in each tube bank the heat-transfer rate is determined by the tube-

wall temperature and the average gas temperature (empirical equa­

tion) , 

m) inertia of the hot gas is neglected, and 

n) delays of gas temperature changes due to the heat capacitance of 

the hot gas are neglected. 

The boiler model given in this paper was considered too simple and not 

accurate (19). However, the analysis and modeling approach has been 

followed by many later boiler model investigators. In efforts for isprcvc-

ments of model accuracy, variations exist in the following areas for the 

boiler models proposed by different investigators: 

a) the simplifying assumptions on physical processes, 

b) the choice of empirical heat transfer equations. 
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c) the definition of model variables, and 

d) the method of obtaining model coefficients. 

It should be noticed that the following factors have been considered 

most significant causes of inaccuracy in a linear boiler model developed 

with this kind of approach: 

a) Empirical heat transfer equations represent only the overall effect 

of heat transfer but do not explain the actual mechanism; these 

equations may not be accurate when the temperature variation through 

the heat transfer section is large. 

b) The simplifying assumptions for the boiler processes may be inade­

quate in describing the processes. 

c) As temperature distributions on heat transfer surfaces are not uni­

form, there are problems of how to obtain accurate model coeffi­

cients. 

d) The incremental equations are accurate only for the steady-states or 

their neighborhood where the model coefficients are calculated. In 

practical boiler operation, it is difficult to maintain the boiler 

variables at steady-state values for a longer period when there is 

no adequate multivariable control on the boiler. Therefore, the 

boiler may not always operate under the conditions where the model 

constants are calculated-

e) The steady-state operating point constants of a boiler are difficult 

to measure for the same reason mentioned in (d). The error on the 

measurement can be large. 
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Some other linear boiler models have been given by Daniels, Enns and 

Hottenstine (7), and Kwan and Anderson (15). The boiler considered by 

Daniels was the same one considered by Thompson at a later time. It was a 

drum-type, coal-fired unit with forced circulation. The use of the average 

of end point values of variables such as temperature, flow rates, density 

for each heat transfer section in this model can cause erroneous transient 

response as explained earlier by Thal-Larsen (29). The boiler considered by 

Kwan and Anderson was a drum-type coal-fired unit with natural circulation. 

The dynamics of the downcomer and economizer were included in the model. 

The nass balance equation, energy balance equation, momentum equation, 

and metal heat balance equation were given for each transfer section. The 

model was represented by 107 algebraic and differential equations. The 

model equations used by Kwan, Daniels, and Chien are similar, but the 

definitions of the variables are different. Chien defined the variables for 

each heat transfer section to be the average values of the sections, and 

Kwan defined them to be the values at the outlet of the sections. None of 

these models was treated correctly in view of the inaccurate factors men­

tioned before. 

In order to obtain more accurate model coefficients so as to improve 

model accuracy, it has been suggested to divide each heat transfer section 

into small "elemental secLiuus." Accurate steady-state thermal properties, 

such as temperature, pressure, and enthalpy, of hot gas, water, steam, or 

water-steam mixture are then obtained for all the boundary points of ele­

mental sections. Since the differences of variable values between two 

nearby boundary points is small, the model equation coefficients an<^ the 

thermal-physical properties along the heat transfer path can be determined 
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more accurately. The details of using this kind of technique have been 

explained by Thompson (30,31) and Shang (27). Thompson developed a linear 

model for a drum-type utility boiler, and Shang developed linear models for 

once-through boilers. In both cases experimental data measured from heat 

transfer sections for a steady-state operation level of the respective 

boiler were available for the determination of accurate steady-state thermal 

profiles. Extensive numerical computations were made in determining 

steady-state profiles and coefficient values with a digital computer. 

The accuracy of the results is dependent upon the number of elemental 

sections into which a heat transfer section is divided. However, when more 

elemental sections are used, the number of model variables increases 

accordingly. The boiler model then becomes complex. To avoid having a 

boiler model too large in size, Shang (27) also suggested combining some 

elemental sections to form lumps along the heat transfer path. Fewer lumps 

can be used for heat transfer sections with less important storage behavior, 

such as the economizer, and more lumps should be used in the sections with 

important storage behavior, such as the superheater. 

The data provided by Thompson in the comparison of experimental results 

of the boiler with responses of the model, where each heat transfer section 

was divided into five elemental sections, showed that the model responses 

were more accurate than those given by Daniels, but the accuracy was still 

not satisfactory. The data provided by Shang showed better accuracy of 

model responses. However, the limited comparison data available were not 

enough to justify the model accuracy. In both cases, the models do not 

satisfy the requirement of simplicity for control design purposes. 
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Several persons, including Kwatny et al. (16), McDonald (18), 

McDonald and Kwatny (19), and McDonald et al. (20), have studied nonlinear 

models for a boiler-turbine unit, expecting that a nonlinear model could 

cover a wider range of boiler loads. The boiler was the same one con­

sidered by Daniel et al. (7) and Thompson (30). Since a nonlinear model is 

complex itself, care was taken to keep the model in its simplest possible 

form. The model given by Kwatny, McDonald, and Spare (15) was actually the 

same model given by McDonald and Kwatny (19) . Some process equations used 

in the model do not adequately represent the actual processes, especially 

those representing the transfer of heat through the waterwall tubes and 

into the drum. There is a major heat transfer delay in the transfer of 

heat through the tube walls and into the drum system, and the effect of 

these processes on the dynamic performance of the boiler is significant. 

McDonald (18) proposed a nonlinear boiler model at a later time where the 

effect of tube wall metal on heat transfer was considered, but the model 

was still not well-defined. 

There are many difficulties involved in the determination of a non­

linear model to be valid for wider boiler operation ranges. The obvious 

ones among them are the following: 

a) The empirical heat transfer equations may not be valid for a wide 

range of stare variations because these equîLiouS are determined 

from the observations of steady-state heat transfer. 

b) Model coefficients become functions of the boiler states, and 

relations among them are hard to determine. 
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2, Black-box approach 

Another method of modeling a physical system is called the "black-box 

method." The dynamic performance of a physical system is observed from its 

output response with respect to several input signals. Then the possible 

model transfer functions which match the input-output relations are inves­

tigated. The determination of model transfer functions generally requires 

intuition, knowledge in systems theory, and experience with the thermal 

system. The feature of modeling with this approach is that only the overall 

system behavior is required for the model, and it usually leads to simple 

mathematical form. 

Since the model is developed based on the dynamic response of the sys­

tem, it can describe the system dynamics very well if the model is correct. 

However, since the transfer function which can fit one set of input-output 

data is not unique, frequently a model for a complex multivariable system 

is derived which accurately fits one set of input-output data but is 

inaccurate for a different set. This is particularly true for systems 

involving nonlinear processes. 

Some black-box models for thermal power plant boilers have been pro­

posed, e.g. by Profos (23), de Mello and Imad(8), Laubli and Fenton (17) 

and de Mello, Mills and B'rells (9). They have been included and dis­

cussed ir> a recent publication by Andersen (1). 

One common problem with a black-box model is how to find the model 

constants. In earlier days, it was suggested to simulate the model on an 

analog computer and to find the model constants by tuning the potentio­

meters on the analog computer and comparing the response of the model with 
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the response of the physical system for step inputs or ramp inputs. This 

approach is time consuming and difficult to obtain accurate results, 

especially for a multivariable system. With the progress in system identi­

fication, the parameter identification technique becomes available for pro­

viding a convenient means of estimating model constants. The input-output 

data measured from the physical system with inputs perturbed are required 

for the identification computation. The computations are performed on a 

digital computer. The input-output data should be measured from the test 

on the physical system with inputs perturbed. This kind of measurement is 

usually easier to do than measuring the steady-state operation point values 

as required for computations with models developed with the physical 

approach. 

Applications of the parameter identification technique to identify 

parameters for some thermal and nuclear power plant models have been 

reported (10,12,21,22,24,25). Among them Park (22) and Eklund and 

Gustavsson (10) identified thermal power plant boiler models. The identi­

fication by Eklund and Gustavsson was based on single input experiments, 

and that by Park was based on multiple input experiments. The boiler model 

identified by Park was very close to that proposed by Laubli and Fenton (17). 

The model inputs are fuel flow rate and control valve position, and the 

ïïlOuOx outputs ârc tiirottlê pLcSSUrè âïïu Stê2m. flOw T^tê. Tiié mêâSUrêu 

dynamic response data from a utility fossil power plant boiler were used to 

compute the model parameter constants. The results showed that the outputs 

of a model with constants computed with a set of dynamic data agree very 

well with the measured outputs for a period of about twenty to thirty 
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minutes. However, the model with parameters computed with one set of data 

could not produce comparable output responses for a different set of physi­

cal data measured at nearly the same power level. 

3. The modeling approach in this research 

Because of the shortcomings of the boiler models developed with the 

previous two approaches, in which a model developed with physical approach 

is too complex for control studies and a model developed with black-box 

method may not represent the boiler for a longer period, a boiler model 

developed here will utilize the advantages available from these two 

approaches. The resultant model may be considered as a more accurate black-

box model. 

The model equations will be developed based on physical principles, and 

the advantageous parameter identificaLion meLhod can be used to compute the 

model constants. With model constants computed by this method, it is no 

longer necessary to divide the heat transfer section into elemental sections. 

X1IU& Line 1. cau.t UO.ll U iio.vc uho jl. wj' c* t. MWOW 

simplest physical model. Since the model constants can be computed with the 

d^mamic response data of the boiler, the model will be able to describe the 

boiler dynamics very well. 

In order to obtain an accurate model suitable for control studies, all 

the system processes which have significant effects to the overall system 

behavior will be included. Unlike all the black-box models given before in 

which the temperature features of a boiler are not included, the model 

dsvelcped here will include important pressure features as well as 
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temperature features. Temperature features are important for boiler con­

trols, as will be explained later. 

The model variables, such as temperature, pressure, and mass flow rate 

for each boiler component will be defined to be the "effective average 

values" of the corresponding properties. The physical equations which are 

nonlinear will be linearized with respect to steady-state operation points. 

Although this will result in a model which is accurate only around these 

operation points, the model can be accurate for a wide load range of the 

boiler when the temperatures across the heat transfer sections and the drum 

pressure are maintained to have minimum deviation from the desired operation 

points during load changes with suitable multivariable control. This 

scheme is possible because the rate of heat transfer is a function of tem­

perature gradient and medium mass flow rate. When the temperature gradient 

is fixed, the rate of heat transfer becomes a function of mass flow rate. 

The heat transfer equations then become closer to linear and valid for a 

wider range of linear perturbations. 

Care should be taken in measuring the dynamic physical data for iden­

tification computation. The boiler must operate under desired steady-state 

operation conditions for a period before the inputs are perturbed and the 

data are recorded. 



www.manaraa.com

14 

II. BOILER PROCESSES 

The boiler is constructed mainly of metal tubes and a drum. The 

burning of fuel produces heat in the furnace which is essentially surrounded 

by waterwall tubes. The hot gas is drafted by fans. Waterwall tubes, 

superheater tubes, reheater tubes, economizer, and air heater are located 

in a gas passage and absorb heat from the hot gas. The fraction of heat 

which is not absorbed is lost to the air through the stack. Figure 2 shows 

the diagram of the gas flow path. 

Inside the different boiler sections, flows water, steam, or a mixture 

of both. The saturated water at drum pressure enters the downcomer at the 

downcomer inlets located at the bottom of the drum. While circulating 

through the waterwall tubes, the water absorbs heat and is converted 

partially into steam. The mixture of steam and water discharges into the 

drum at the waterwall outlets located at the upper portion of the drum, 

where the water and the steam are separated. When part of the water in the 

drum system is converted into steam, the water level in the drum decreases 

at the same time. A feedwater control is used to feed water out of the 

economizer into the drum so that the water level in the drum can be main­

tained. The steam in the drum leaves the drum and passes through super­

heaters before going through the throttle valves. The steam gains addi­

tional energy in the superheaters and becomes superheated at the throttle 

valve. The steam with high heat energy potential is then discharged through 

the throttle valve into the turbine in which part of the heat energy is con­

verted into mechanical energy that drives the turbine. The steam and water 

flow paths are shown in Fig. 3. 
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In the model development, the "effective average" values of process 

variables are used to describe the processes they represent. Thus the 

variables in the model are defined to be the effective average values of 

the corresponding process variables. Since the dynamics of the economizer 

are negligible for the overall boiler dynamic performance, the economizer 

will not be included in the model. 

A. Gas Path Equations 

Time constants for gas dynamics are so short in comparison to the 

steam-water side (6) that the dynamics of the flue gas can be ignored. 

The heat produced in the combustion is determined by 

q = KfWf + CfWfTfi + - Cas^WashTash 

heat produced heat carried heat carried heat lost 

by fuel burning by fuel by air with ash 

(2-AI) 

The mass rate of flue gas production is 

W = W, + W - W (2—A2) 
f a ash • 

The heat produced in the furnace is absorbed by different boiler sections 

or lost to the air. An equation which describes the balance of energy of 

hot gas is 

" ' --g" " S "s " 'f * "ge * «-A3) 

where 

q = rate of heat transfer from gas to waterwall 
gw 

= rate of heat transfer to primary superheater 

q^ = rate of heat transfer to secondary superheater 

= rate of heat transfer to finishing superheater 
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and 

wnere 

q = flow of heat into reheater section 
gr 

q = flow of heat into economizer section 
ge 

Kg = caloric value of fuel 

Cg = specific heat of fuel 

= specific heat of air 

Cash ~ specific heat of ash 

Wg = fuel flow rate 

W = air flow rate 
a 

W , = rate of ash formation 
ash 

= temperature of the fuel flowing into furnace 

= temperature of the air flowing into furnace 

Tash ~ ash temperature 

"sr = Wgr 

"ge • - "̂ g'Vse 

= the fraction of gas which flows into reheater section 

= temperature cf the gas flowing into reheater section 

= temperature of the gas flowing into economizer section 

= flow rate of the hot gas. 

Defining 

''sh = 4. + Sg + Sf 

q = q + q 
re ĝr ĝe 
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and let be the rate of heat flowing out of the furnace. The heat input 

and output relation in the gas path is then 

^  ^  -  V  

r̂e ŝh' 

The incremental equations for these two equations are 

Aq = Aq - Aq and (2-A6) 
n  ̂ gw 

Aq = Aq - Aq , . (2-A7) 
r̂e n̂ ŝh 

The incremental equations for Eqs. (2-A4) and (2-A5) are 

Aq AW AT 
 ̂  ̂ and (2-A8) 

q W T 
gro go gro 

Aq AW AT 

geo go geo 

For complete fuel burning in combustion, the average fraction of ash 

produced from fuel is determined by the chemical property of the fuel. The 

average ratio of ash production rate and flow rate is a constant. Let 

Equation (2-A2) becomes 

W = (1 - (2-AlO) 

The incremental equation is simply 

AW = (1 - R̂ g)AŴ  + AŴ  (2-All) 

Also, Eq. (2-Al) becoc.es 

q = (K, + CfTfi - (2-A12) 
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The incremental equation for this equation is 

Aq = KAW^ + C T aw (2-A13) 
f a a a 

wnere 

K + Ĉ T̂  ̂- ̂ ash'̂ ash\f * 

The temperature of flue gas in the furnace is estimated by 

^f " C~V • 
g g 

The incremental form of this equation is 

T T 
AT̂  = — Aq - AW . (2-A14) 

ô "go  ̂

B. Transfer of Heat From Flue Gas to the Waterwall 

Transfer of heat to the waterwall tubes involves a radiation process 

and a convection process. Since the convection heat transfer contributes 

only about six to seven percent of the total heat transfer to the waterwall 

tubes (28), the average heat transfer may be described by a radiation proc­

ess only. 

The radiant heat is absorbed by the tube wall in accordance with the 

Stefan-Boltzman Law: 

= OeAgCTg - TJ) (2-Bl) 

where 

T̂  = flame temperature 

T̂  = effective average tube wall temperature 

e = emissivity factor, depending on the tube material and surface 

condition 
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-9 2 o 4 
0 = Stefan-Boltzman constant, 1.73 x 10 Btu/ft Hr R 

= effective flame envelope area 

q = rate of heat transfer to waterwall 
BW 

The incremental equation for (2-Bl) is 

iq 41̂  

•gwo 
£̂o -

Â A?! (2-B2) 

C. Transfer of Heat From Flue Gas to Superheater 

The flow of gas through the superheaters is in the following sequence 

n̂' \ 

Gas flow 

direction 

M 
u d) T , (q - q ) 00 0) Tr «J Cti -W s n s C W f "U CO •H ra W CO C Q)  ̂Q) to (U 
O M jr e ̂  U -̂1 •H •H U Q) 0) ^ C 0) !-i OJ œ c. •H p. P4 D. 3 P=H D 3 03 m m 

where the secondary superheater is also called a partial division wall 

superheater. The finishing superheater is also called a pendant superheater, 

and the primary superheater is also called a convection superheater. 

The temperature of the flue gas leaving the furnace is given by 

q - q. 
T = 
n 

gw 
C w 
6 g 

(2-Cl) 

The transfer of heat to the secondary superheater is by both radiation and 

convection. 

r: — n 4- n  ̂0— 
sr "SC 

The rate of radiation heat transfer is given by 

- ts' 
(2-C3) 

;tion heat transfer is given by 
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q = K-W" (T - T ) (2-C4) 
ŝc 1 g n ms 

where 

T = effective average temperature of secondary superheater tube 
ins 

wall surface 

= flue gas flow rate 

Cg = specific heat of flow gas 

The temperature of the flue gas leaving the secondary superheater is given 

by 

T» ° - Cll- (2-C5) 
g g 

The transfer of heat to the finishing superheater is also by radiation and 

convection. The corresponding equations are 

qf " 9fr f̂c (2-C6) 

•Ifc ° (2-C8) 

The transfer of heat to the primary superheater is mainly by convection. 

The temperature of the flue gas leaving the finishing superheater is given 

by 

T_ = - F-Tir- (2-C9) 
"g"g"g 

Kg = the fraction of flue gas flowing into primary superheater 

section 
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The heat transferred to the tube wall is 

q = K_(K W )"(T - T ) (2-ClO) 
P 3 g g p mp 

The temperature of the gas flowing into the economizer section is given by 

T = T -
p Wg 

The temperature of the flue gas flowing into the reheater section is 

T = T 
gr p 

and the fraction of gas which flows into the reheater section is 

W = (1 - K )W 
re g g 

The total heat flowing into the reheater section and the economizer section 

is 

q  = q  + q  = K W T  + ( 1 - K ) W T  
re ĝr ĝe g g gP g g ge 

where the variables have already been defined in Section A for Eqs. (2-A4) 

and (2-A5). 

- î  • ! - » / > Q  1  - h l i o  t *  T  r » T l  i Q  a  T A  

AT , AW 
Aq Aq 

q - q ' q - q "gw W 
no o gwo o gwo go 

(2-Cla) 

Aq = Aq + Aq (2-C2a) 
s sr so 

Aq 4T̂  4T̂  
sr _ no mso 

%vo t"̂  - T T̂  - t"̂  
no mso no mso 

^ = I - T - T - I + if- % 
SCO no mso no mso go 
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At = at - — — Aq + -S2_ ®£ AW (2-C5a) 
s * 4so s "go 8 

q̂f = Aq̂  ̂+ Aq̂  ̂ (2-C6a) 

Aq 4T̂  4T̂  ̂

so mro so mfo 

 ̂° - \£o  ̂̂  

AT . AT - °̂ ~ P° Aq, + °°„" P°AW (2-C9a) 
" = If.  ̂ V ® 

Aq 

^ - T -T % - T -T + ÎT- % "-ClOa) 
po po mpo po mpo go 

Combining Eqs. (2-C2a), (2-C3a), and (2-C4a), 

no mso 
o 

/ 4q T q \ no 
I sro mso . ŝco \  ̂ . "sec 

VL - C V 

Combining Eqs. (2-C6a), (2-C7a), and (2-C8a), 

/ 4a. q. 
Aq. =1 +, 5% at. \ 

/4a- T^_ q, \ 

Vto - tlo 

Substituting Eq, (2-Cla) into Eq. (2-C5a), 
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T T T - T T 
AT = 22 Aq Aq - Ê2 Aq - AW 

= - 4g„o 9o - Sgwo Sw s IW,, g 

(2-C13) 

Substituting Eq. (2-C13) into Eq. (2-C9a), 

T T T - T 
AT = S2 Aq 22 Aq -  ̂Aq 
P %- Sm 9o -9gwo Qs* s 

_Iso Iso Aq. - ̂  AW (2-C14) 
Sfo  ̂ 8 

Substituting Eq,- (2-Cla) into Eq. (2-Cll), 

Aq = K (Aq - Aq ) - K-AT - K„AW (2-C15) 
s 1 gw 2 ms 3 g 

where 

T /4q T̂  q 
 ̂_ no I sro no  ̂ see 

 ̂ "o ' "gwo Vt'' - l'" n̂o - \so, 
 ̂  ̂no mso ' 

4q T q 
_ sro mso sco 

2 4 4 T - T 
T - T no mso 
no mso 

T / 4q T̂  a \ nq 
no : sro no , sco \ 

K, = 7f̂ \ 7— + 
SCO 

i 4 4 i — T I W 
go \ T - T no mso / go 
 ̂ \ no mso / 

Substituting Eq. (2-C5) into Eq. (2-C13), 

/ T T - T \/ \ 
22 K, !2 !!i= - i= ! 

^ c - V o  '  J\ '  ' ^ 7  

T - T  /  T  T - T  

s 

+ — — AT -(^+K--22 I AW (2-C16) 
2 =••= \\o  ̂ %o I  ̂

W L* W O L. ̂  ̂ ̂  ̂ ̂ # \ ̂  Vv V y —». W —« 

iqj = K,(iq - (2-C17) 
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where 
4q. q. \ / T 

K =1 FRO so FCO \ I no 

 ̂I ŝo ~ \fo)\% ~ ̂ gwo 
SO mfo ' ̂  ̂

4q̂  T"̂  q. \/ T - T 
V - V I fro so fco \} no so 

- W\ 

 ̂_ ^̂ frô mfo "̂ fco 

 ̂ '̂ so ~ \fo 
so mfo 

4q. q. \/ T T -T \ na. 
TT _ I fro so , fco \/ so , no so \ "tco 

Substituting Eqs. (2-C15) and (2-C17) into Eq. (2-C14), 

/  T  T - T  T - T \  

T - T  T - T \  /  T  -  T  \  
+ fK, -S° 52 _ K _so E£ AT +KĴ  22 AT , 

2 Sgo 5 y ms q̂  ̂ / mf 

/  T  T - T  T - T \  
_ _E£ _ K -S° go _ K _̂ £ 2°\ 
I TJ r, *^7 „ I -  ̂1 AŴ  (2-C18) 
\ / S 

Substituting Eq. (2-C18) into Eq. (2-ClOa), 

Aq̂  - Kg (A. - Aq̂ ) + EgAT̂ S + " K,,AT̂  ̂- K̂ 2% (Z-"*) 

where 

DO 
/  T  T - T  T - T \  

_ / no „ no so so po \ 
3̂ Tp - T \ q - q ' "l q "4 q. / 

fo mpo \ o gwo ŝo f̂o / 

q  /  T - T  T- T \  

S  =  -  S )  
po mpo y so fo / 

K,a /T - T \ 
V- = P PO ( SO PO 
^ i n T _ T  I  ^  I  

'p 'mpo \ "To / 
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K,, = 
11 T - T 

po rapo 

q /t T - T T-t\ 

1̂2 " T ~̂T i " S q h  ̂̂  j 
po mpo \ go so fo / 

The total heat absorption in the superheater sections is 

+ Sf + q. 

Or, in incremental form 

Aqsh = + Aq̂  + Aq̂  (2-C20) 

Substituting Eqs. (2-C15), (2-C7), and (2-C19) into Eq. (2-C20) 

(2-C21) 

where 

*14 = Kl + *4 + Kg 

Kl5 = =2 - *3 - Kg 

rs._ , — — fv. ̂  
XD D ±U 

%17 - %3 + K? + %12 

D. Transfer of Heat Through Metal Tube Wall 

Assume that the temperature on both the inner and outer surfaces of a 

métal tube are uniform. Then the transfer of heat through the tube can be 

approximated by the radial heat conduction. Shang (27) used thin layer 

approximation to represent the physical heat transfer process as the radial 

heat conduction, as shown in Fig. 4. 
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•gw 

Fig. 4. A tube wall divided into thin layers. 

The thin layer approximation can be used to represent a heat transfer 

delay through the tube wall. Suppose that the metal tube wall is composed 

of N thin layers so that transfer of heat in each thin layer is in the 

radial direction. Let 

= rate of heat flow out from ith layer and into (i + l)th layer. 

T̂  = average metal temperature of each layer. 

Then the variation of temperature in each layer is given by the equa­

tions 
dTi 

q - q, = D,c,V, -rr-
gx ± i i J. ac 

V 5  
1̂ 2̂ 2̂̂ 2 2 dt 

2̂ 3̂ 3̂̂ 3*3 dt 
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dT 

%-l ~ ̂ Dx ~ "dT (2-DI) 

and the transfer of heat between the layers is determined by 

,1 = - T̂ ) 

2̂ *̂ 2̂(̂ 2 ~ ̂ 3) 

where 

%-l \-l\-l̂ N̂-l ~ 

= equivalent heat transfer area of the ith layer 

2JIL 

in /"i + 1' 
r. 

r̂  = inner radius of the ith layer 

L = effective tube length 

= metal density of the ith layer 

= speciiic neac ox cne itn xayer 

= volume of the ith layer 

"i 

(i + l)th layer 

q = rate of heat transfer between gas and the outer surface of 
gx 

tube of section x 

q_ = rate of heat transfer between inner surface of the tube 
Dx 

wall of the section x and the fluid inside the tube. 

Combining the above two sets of equations, the state-space equations 

describing the temperature variations in the tube layers and obtained 
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5 
dt 

"l"! T. + T + 1 
91=1̂ 1 1 --gx 

dt PzCgV, '1 

(Ajhi 2̂̂ 2̂  

2̂̂ 2*2 

, . *2̂ 2 _ 
2̂ - 13 

5 
dt 

Ah (A_h + A_h_) Ah 

03̂ 3̂ 3  ̂ 93̂ 3̂ 3 

^̂ N-1 ̂  -̂2\-2 _ (\-2\-2 \-l\-l̂  (2-D3) 

PN-Î N-Î N-I PN-l̂ N-l̂ N-l 

+ -̂iVl T 

N̂-l̂ N-l̂ N-l  ̂

._ •S?-l\-l 4̂ -l̂ N-l 1 

The incremental equations for (2-D3) are 

dAT̂  Ah Â h 

— - "2 

dAT A,h, (A,h, + A,h ) A.h, 

^̂ N̂-1 ̂  N̂-2̂ N-2 . _ 4̂?-2̂ -2 -̂A-1̂  

N̂-l̂ N-l̂ N-l PN-l̂ N-l̂ N-l 

Vl-N-1 (2-D4) 

N̂-l̂ N-l̂ N-l  ̂
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dAT. 
N \-l̂ -l \-l\-l 1 

—nn?— ~ THTir" 

E. Heat Transfer Between Inner Most Layers of Metal 

Tube and Working Fluid Inside the Tube 

For fluid flowing inside the tubes, the convective heat transfer rate 

may be described by 

"D = - ̂ D> (2-Sl) 

with the heat transfer coefficient correlated by 

Nu = a(Re™)(Pr)̂  (2-E2) 

where 

Nu = Nusselt number = hD/k 

Re = Reynolds number = ITD/y 

Pr = Prandtl number = c y/k 
P 

a, m, n = experimental constants 

o -Î T-»-r-i o •><- /̂ -î 

k = thermal conductivity of the fluid 

U = W_/A = rate of mass flow per unit cross-sectional tube 

area 

y = absolute viscosity 

ĉ  = specific heat of the fluid at constant pressure 
P 

A = heat transfer surface area 
n 

T., = temperature of the inner most tube layer 
N 

= average bulk fluid temperature 

"D 
= average fluid mass flow rate 
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Substituting Nu and Re into Eq. (2-E2) and solving for h: 

Let 

A A  ̂= const 
n 

_ -m , alq; = (j) 

h = const (j) (Wĵ )"'(Pr)̂ (Â ) ̂  

then 

and 

q̂  = const $ (Ŵ f (Pr)"(T̂  - T̂ ) (2-E3) 

The development above follows that given by Shang (27). The incremental 

equation for Eq. (2-E3) is 

where (p and Pr are functions of pressure and temperature and may be repre­

sented in terms of these variables. 

Do o \ D u J uo 

(Pr). 

+ /-L-3®. + _!!_ â£î _± VT 

^No-^Do] 
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Equation (2-E3) is applicable for the superheater and the waterwall 

sections. For the superheater sections, Eq. (2-E4a) becomes 

Â Dsh = 

where 

^̂ Dsh ~ heat absorbed by the steam in the respective superheater 

AŴ  = rate of steam flow in the respective superheater 

= temperature of steam in the respective superheater 

™̂ Do ™̂ Dsho  ̂ ,̂ 
= —— = — for respective superheater 

Do vo 

Tr D̂o "̂ Dsho J. . , K = — = for respective superheater 
14 i„ — i_ i — i , No Do mo sho 

_ / 1 34) n BPr \ 
15 - 3Dj, (Pr)̂  3Dj, ) 'do 

/ 1 3(j) , n 9Pr \  ̂ ^̂  
' ( R anT + TPÏT M" ) 'sho respective superheater 
\  o  D  o u /  

V = f i n 5rr 1_ 541 \ 

""Wo-^Do" (fr). ' *0 aOlJ 

[ 1 n 9Pr 1 3$ \  ̂
— I I _ • . - __ • • — I /7 4-RW "»~O OT>CA<^ 4- -1 TTO 

V̂ »o-̂ sho (ft). STsh 
superheater 

In the waterwall section the fluid temperature and pressure are 

related by Clapeyron equation 

 ̂

^̂ D D̂ô fgo 

The rate of heat transfer to the steas-water fixture in the tubs zizj be 

written as 
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where 

^8- w„„ 

K 
D̂Wo 

19 N̂o -

V = '̂ Pô fgo / 1 n 3Pr 1 3c}) 

' 2 0  "  h f g o  \ , T N o  -  ̂ D o  "  ( ? r ) o  9 ^ 0  "  * o  ^ D ,  

{_&_ 3(() n 3Pr 
-Uo % (f). SDg 

F. Variation of Drum Pressure 

Assume that (3) 

a) water in the drum, downcomer, and riser are saturated water at drum 

pressure, and 

b) steam in the drum and in the riser tube is saturated steam at drum 

Let 

where 

W. = feedwater flow rate, 
fw 

W = rate of steam flow out from drum, 
V 

= volume of water in drum, downcomer, and riser, 

= volume of steam in drum, downcomer, and riser, and 

= drum pressure , 

V , + V , = V = total internal volume of drum, downcomer, and 
WG go 

riser. 
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Then the mass balance equation is 

"fw " "v ° ° ̂  '"f'wd " \d" 

where 

pg = density of the water in drum, and 

= density of the steam in drum. 

The incremental equation for Eq. (2-Fl) is 

d r 
AWfw - AWy = âE [(Pfo - Pgo)AVwd + VwdoAPf + VgdoAPgj 

dAV 
wd 

dAp, dAp 
= (Pf. - P_) -1̂  + V .7/1 r» *4f- + V 

Sdo dt 
& (2-F2) 

Since p̂ . and p̂  are functions of drum pressure, Eq. (2-F2) may be written 

dAV 

AWfw - AŴ  - (PfQ - Pgo) 
wd 
dt 

3P, 9P, 
+ V 

wdo 9D̂  gdù 3D̂  

dAD, 

dt 

(2-F3) 

The energy balance equation is 

h W_ — n W -r u_ — -TTT (u„D_V , h D V ,) 
 ̂ uw QL r r wa g K gu e rw g V 

(2-F4) 

h_ = enthalphy of water in drum 

ĥ  = enthalphy of steam in drum 

The linear incremental equation for Eq. (2-F4) is 

h AW^ =h AW -W Ah +ADW 
e fw go V vo g q 

+ h p AV + h V Ap + V p Ah ] 
go go gd go gdo g gdo go g 

(2-F5) 
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Since ĥ , h , p̂ , and p are functions of pressure in the drum, Eq. (2-F5) 
 ̂ 8  ̂ ë 

can be written as 

3h 
h - h AW + Aq̂  - W AD„ 
e fw go V Dw vo oD̂  D 

where 

dAV, 
Wd 

fo fo go go dt 

3p. 3h, 
h. V + Pr V 
fo wdo 9DJJ fo wdo 9D̂  

3P, 3h 
h V + V , p 
go gdo gdo go 

fD 
dt 

(2-F6) 

dV . . dV , 
_Si = _â_ (V - V ) = - —̂  
dt dt  ̂ wd-̂  dt 

Let 

*1 = Pfo - Pgo 

3APj 3Ap 
a. = V + V 

g 
2 wdo 3D̂  gdo 3DJJ 

au = h_ o_ - h 0 
< to to ?o t?o 

3pf 3p̂  3ĥ  

4̂ f̂ô wdo 9D̂  ̂  °fô wdo 3D̂  ̂  ̂gô go 3D̂  ĝdô go oD̂  

3h 

5̂ ^̂ vo 3D. 

Then Eq. (2-F3) becomes 

dAV , dAD_ 

'i-dr^^2Tr = n»-™v (2-F7) 

Equation (2-F6) becomes 
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dAV dAD 

*3 --dl^ + *4 + asADo = heAWfw " hgoA*v + ' (2-?*) 

Combining Eqs. (2-F7) and (2-F8) and eliminating AV̂ :̂ 

dAD̂  

(*1*4 - — + 'l®5% " 

or 

^ ^ 
a. Î1 — 
— — AW, ^-22 1 ÛW + —i—— (2-F9) 

31*4 - 32*3  ̂ *1*4 - *2*3 

G. Superheater Equations 

Assume that the pressure drop across the superheater is negligible. 

Then the steam pressure in the drum may be represented by the drum pressure. 

The superheater equations may be written as (5,11,15) 

dp. 
W - W, = V (2-Gl) 
a b at 

%t " Va " = " A (Vh)' (2-G2) 

where 

T.7 = rate of steam flow into the superheater section 
a 

= rate of steam flow out from the superheater section 

V = superheater volume 

= steam density at superheater outlet 

ĥ  = enthalphy of steam at superheater outlet 
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= enthalphy of steam at superheater inlet 

q = rate of flow of heat from tube wall to steam 
St 

ihe incremental equation for Eq. (2-Gl) is 

dAp 
AW - AŴ  = V -T-S 
a b dt 

The incremental equation for Eq. (2-G2) is 

Aq + W Ah + h AW - W, Ah, - h, AW, 
St ao a ao a bo D DO b 

(2-G3) 

= V p. 
dAĥ  dAp, 

+ h. 
bo dt bo dt 

(2-G4) 

Combining Eqs. (2-G3) and (2-G4) 

%̂t + "aô \ " ̂bô \ " (\o " 

( \ 
yho ~dt~ \̂o ~ \ô  dt J 

= V p. (2-G5) 

Since ĥ , and p̂  are functions of pressure and temperature, Eq. (2-G5) 

can be written as 

3h 
Aq 

, 3ĥ \ 9h 9h, 

St " (\o 9# - -So 3D~ )̂ D "ao 3T̂  " \o SÏT "S 
\ D D / a b 

•"b . . ""bl •'% 
" " "ao'""b ~ ybo 9D̂  " '"bo " "ao' 9D̂  j dt 

r 3ĥ  

"r %o W- + 

3p, 

3 T. 
bj 

dAT, 

dt 
(2-G6) 

Let 

b̂  = V Pbo + (\o - ̂ ao) 
b D 
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= -V 
9Pb 

b̂o 3D̂  ~ 3D̂  

dK 9h 

4̂ - "bo 3D- - \o 9D̂  

9h 

5̂ âo 3T 

b, = h - h 
6 bo ao 

Equation (2-G6) can be expressed as 

b. 
dAT dAD 

+ t2ATb = b, - b.AD, + b;ATa 1 dt 
b,AŴ  + Aq  ̂ (2-G7) 

b b St 

H. Flow of Superheated Steam Through Throttle Valves 

The equation for estimating the rate of steam flow through the throttle 

valves has been given in many books on steam turbines (14). 

W„ = CT^^ 
(2-HI) 

where 

D = throttle pressure 

v̂  = specific volume of the steam before throttle 

= effective throttle area 

= steam riow rate 

r = 
"T 

2gnm f 2/m^(m+l)/m'\ 
m - 1  V  '  J  

1/2 

m = 
n - n(n - 1) 

n = valve efficiency 
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y = pressure ratio 

n = adiabatic index 

For superheated steam, the ideal gas equation is observed 

Vt ' 

or 
RT 

'I = ̂  

Substituting Eq. (2-H2) into (2-Hl), 

A 

The incremental equation for Eq. (2-H3) is 

AW AA AD AT 

Another equation which predicts the steam flow rate is Napier's experimental 

equation 

W_ = CA_D_ (2-H5) 

The incremental equation for this equation is 

AW„ AA_ AD̂  
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III. BOILER MODEL 

The boiler model will be presented in the form of block diagrams in 

the complex frequency domain. This kind of presentation is to show the 

model in compact form, which provides better visualization of the relation­

ship among the boiler variables. The boiler models developed with the 

black-box approach are usually presented in this form. The model developed 

here may be classified as a gray-box model because the model equations in 

the "box" are developed from physical principles. 

The boiler variables which are important for control studies have been 

included in the model. The model has five inputs and four outputs. The 

inputs are 

1) fuel flow rate, 

2) air flow rate, 

3) feedwater flow rate, 

4) control valve area, and 

5) flow rate of the circulation fluid. 

The outputs are 

1) steam flow rate, 

2) drum pressure, 

3) throttle steam temperature, and 

4) the heat flow into reheater and economizer sections. 

The heat flow into the reheater and the economizer sections is the 

heat lost from the system considered for the model. This output may not be 

controlled, but the physical data for this heat loss are required for param­

eter identification computation. The steam flow rate is the main variable 
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to be controlled since it determines the amount of steam energy flowing 

into the turbine. Drum pressure and throttle steam temperature are the 

most significant factors which influence the dynamic properties of a boiler. 

For efficient operation of a boiler, it is desirable to have these two 

variables controlled so that the variation of these variables are minimum 

during load variations. 

The model has included the following boiler variables as state 

variables: 

a) waterwall tube metal temperature, 

b) primary superheater metal temperature, 

c) secondary superheater metal temperature, 

d) finishing superheater metal temperature, 

e) outlet steam temperature of primary superheater, and 

f) outlet steam temperature of secondary superheater. 

For safe operation of a boiler, it is important to maintain these 

temperature values below the safety margins of the respective boiler com­

ponents, The superheater outlet temperatures are usually controlled by 

superheater sprays. The limitation of metal temperatures may be included 

in the constraint functions for control studies. 

In this chapter, a complete boiler model and a simplified boiler model 

in which the superheater sections are. treated as one superheater are pre­

sented. The metal wall of the boiler is treated as one single layer. How­

ever, there is no difficulty in obtaining the transfer function with the 

tube wall divided into more layers; it only takes more time for mathematical 

manipulation. The transfer functions with the tube walls divided into 



www.manaraa.com

43 

three layers are given in Appendix A and B. It is not clear what is the 

appropriate number of layers to be used to describe the delays of heat 

transfer through the tube walls. This can be determined with the results 

of the parameter identification computation. At the beginning, the wall 

may be treated as one single layer. If the heat transfer delay is not 

properly represented, the error between the model outputs and corresponding 

physical data will be large. Then the number of layers should be increased. 

A. Model Equations 

The boiler process equations have been developed in Chapter II. The 

equations which contribute directly to the composition of a boiler model 

are collected here. 

a) Gas Path 

Aq = KAŴ  + C T AW (2-A13) 
 ̂ f a a a 

Aq̂  = Aq - Aq̂  ̂ (2-A6) 

Aq = Aq - Aq , (2-A7) 
r̂e n̂ ŝh 

Aq ^ = Aq + Aq_ + Aq (2-C2G) 
ŝh ŝ f̂ p̂ 

Aw = (1 - R, ̂)AŴ  4- AW (2-All) 
g ht r a 

T̂  T 
AT̂  = r AW (2-A14) 
f ' Wgo S 

.3 ._3 

. S"? AT. - 8"? AT. C2-B2) 
V - t' ' rt - t'  " 

o T ro lo 
lo 

Aq = K,(Aq - Aq „) - K_AT - K.Aw (2-C15) 
s 1 gw z ms 3 g 

Aq. = K.(Aq - Aq ) + K.AT - K.AT . - K_AW (2-C17) 
f 4 gw 5 ms 6 mf 7 g 

Aq_ = KgCAq - Aq + KgAT^^ + K^gAT^f - K^^AT^^ - K^^AW^ (2_C19) 
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b) The temperature of the waterwall tubes is given by Eq. (2-D4). For 

single layer représentation of the tube wall, the variation of the 

metal temperature is given by 

dATi J 

-dT ' FTir V 
w w w  

c) The rate of heat transfer to the fluid inside the waterwall tube is 

given by Eq. (2-E6) 

• =̂ 18% + KigATi - >=20% 

d) The drum pressure dynamics is given by Eq. (2-F9) 

 ̂+ 'I's AD AW 
dt - â aj D â â  - â â  fw â â  - â a, V 

a.Aq 
+ L_SH (2-F9) 

*1*4 - *2*3 

e) The dynamics of the superheater tube metal temperature are given by 

Eq. (2-D4). For single layer representation of the tube wall, the 

variation of metal temperature of secondary superheater is given by 

dAT 
- "%s> »-«> 

ms ms ms 

The variation of metal temperature of the finishing superheater is 

given by 

dAT ̂  , 

-df- - (ASf - '"-Df' 
mf mf mf 

The variation of metal temperature of the primary superheater is 

given by 
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dAT 

mp mp mp 

f) The transfer of heat to the steam in each superheater section is 

given by Eq. (2-E5). The equations describe the rate of heat flow 

to steam in the secondary superheater, finishing superheater, and 

primary superheater are 

+ ̂ 13% ' 

' ®21®f " + ='23% " "-A7) 

Â Dp ' "31% + "32A\P + ̂ 33% - "â Â pt (3-AS) 

where are defined as in Eq. (2-E5) for the respective 

terms. With the assumption that pressure drops through the super­

heaters are negligible, the steam flowing through each superheater 

may be approximated by 

AW = AW = AW. = AW_ 
p s r i 

where Ŵ  is the throttle steam flow rate. 

g) The dynamics of the outlet steam temperature for each superheater 

section are determined by Eq. (2-G7). The equations for the 

respective sections are 

dAT_. dADr 
- - h An + K AT - h AI. . 

P Dp 

(3-A9) 

"ll ̂  + tl2&Tpt ">13 ̂  - "14% + "15% - "16% + % 

dAT dAD 
"21 --df- + tz-AT;̂  = b,, _ b̂ ÂD, + bzsATp̂  _ bẑ AW, + Aq_̂  

(3-AlO) 
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dAT dAD 

Si "=34̂ 0 + Sŝ st - "sê f + Â Df 

(3-All) 

where b..'s are defined as b's in Section G of Chapter II. 
1.1 

The intermediate variables Aq„ , Aq_ and Aq_̂  may be eliminated; 
Dp D̂s, Df 

Substituting Eq. (3-A6) into Eq. (3-AlO) to obtain 

dAT dAD 

"21 - dT + = "23 + ''25%t - "26®= 

+ + ̂ 13% -

Rearranging the equation, 

dAT dAD 

2̂1 dt ^̂ 22 Û̂ '̂ ŝt " ̂23 dt (*13 2̂4̂ Ŝ 

- (̂ 26 - ail)AWs + ai2ATms + t25ATpt 

Similarly, sustituting Eq. (3-A7) into Eq. (3-All), 

dAT 
+ (boo + a_,)AT, 

31 dt "32 24' ft 

dAD_ 

" ̂33 dt (*23 ~ ̂ 34̂ ®̂D ~ ̂ 3̂6 ~ *21̂ '̂ f̂ *22̂ m̂f 

+ bĝ ATgt (3-Â13) 

Substituting Eq. (3-A8) into Eq. C3-A9), 

dAT dAD 
b,, 1- (b, „ + a.,)AT . - b,̂  — H (a.- - b. ,)AD_ 
±± GC pC CC ±<4 LJ 

- (b,, - a_)AW + a„AT + b_AT̂  (3-A14) 
i.o p jZ mp ±3 3 

h) Equation (2-K4) will be used in the model for throttle steam flow 

race: 
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T̂n "TO T̂n 
= -̂  AA,̂  + :̂  AD - AT (3-A15) 

 ̂ T̂o To  ̂ To  ̂

With the assumption of negligible pressure drop in the superheater 

sections, the following approximation can be used 

AT̂  • ATjj. 

B. Boiler Model in Frequency Domain 

The model differential equations will be transformed to the complex-

frequency domain. Then, the boiler model will be established with the 

transformed equations. The transformation of algebraic equations will not 

be performed here because they are of the same form as in time domain, 

a) The dynamics of waterwall tube metal temperature is given by 

Eq. (3-Al) 

dAT 
 ̂ (Aq_, - Aq̂  ) (3-Al) 

dt p c V ĝw Dw 
\J JJ 

The transformed equation is 

w w w  

b) Drum pressure dynamics 

A AT* 

 ̂= - P.ADj, + P̂ A»;̂  - PjAM̂  + PyAq̂  ̂ <2-P9) 

where 
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P . "l'a - ̂ 3 

5 W - "2^3 

. - 3̂ 
6 

P.= 
7 aj_â  - â aj 

and â , â , â , â , and â  have been defined in Section F of 

Chapter II. The transformed equation can be written as 

D S + 

c) The basic equations describing the transfer of heat through metal 

tubes of the superheater sections are the same. For the primary 

superheater 

dAT 1 
-df ' p c V (ASp - %p) <3-A5) 

mp mp mp 

%p ' "31% + "32̂ % + ̂ 33̂  - ̂ 34%t 

Combining these two equations: 

dAT 
= ?oAq_ - F AD^ 4- F, ̂AT^^ - F, AW - F, AT 

dt 8 ̂ p 9 D 10 pt 11 p 12 mp 

where 

= 

8 p c V 
mp mp mp 

P_ = *33 
9 p c V =P -p 
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P - 3̂4 
10 P C V 

mp mp mp 

a ^ ,  

P -
11 p c V 

mp mp mp 

P -12 p c V 
mp mp mp 

The transformed equation for the primary superheater metal tempera­

ture can be written as 

«X . , ,333, 
s+P,, ^ ' 

For the same reason, the equations for the secondary superheater 

temperature and the finishing superheater temperature are Eqs. (3-B4) 

and (3-B5), respectively. 

- P̂ ,AD„(S) + PI5AT̂ ,(s) - P̂ ,œ (s) 
(3-34) 

- P^OAD^FS) + P„-,AT.^(S) - P AM (s) 

AT___j(s)=— " s fP^^ "• ' ^ 

where 

1 P = 
13 P c V 

ms ms ms 

P = — 
14 p c V 

ms ms ms 

15 p c V 
ms ms ms 

16 p c V 
ms ms ms 
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P„. 17 p c V 
ms ms ms 

2̂3 

. = '24 

. = '21 
2̂  

p.. = *22 

22 m̂f̂ mf\f 

d) The transformed equations for outlet steam temperature of the super­

heaters are obtained from Eqs. (3-A12), (3'A13), and (3-A14), 

respectively. 

P„„(s + P_,)AD_(s) + P..At_ - P,̂ AW_ + P̂ ,AT_„ 
. . ZJ) U ZJ U U  ̂V O 6 / mo /"5 

iiT̂ (̂,s; _ _L 

ATjt(s) = 

S + ̂ 28 

+ 
*31^\t - ?32A*f + fssATmf 

s + P34 

P35(s 4. P3,)ADJ,C3) + ?37ATD - fssAWp + PsgATmp 

S + P40 

(3-B7) 

AT̂ (̂s) = „ (3-B8) 

where 
b 

2̂3 b" 

P.. -
24 b23 
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2̂5 b 
21 

26 
6̂ ~ ̂ 11 

2̂1 

27 b 
12 

21 

28 
2̂2"*" 1̂4 

2̂1 

29 b 
33 

31 

30 
2̂3 3̂4 

3̂3 

31 b 
35 

31 

32 
3̂6 2̂1 

3̂1 

22 

3̂1 

34 
3̂2 + ̂24 

3̂1 

35 b 11 

3̂3 1̂4 

"13 

*37 b 
11 
11 



www.manaraa.com

52 

P 
38 bii 

r. - "32 
39 

P • ^12 " "34 

40 - bii 

The model block diagram is shown in Fig. 5. The constants indi­

cated in Fig. 5 are defined below, where the constants on the right 

hand side have been defined in the derivation of the equations. 

Li = Kf + CfT̂ l - Ĉ ĝ T̂ sĥ hf 

= CaT* 

L3 = 1 

= 1 - *hf 

S ' - ?!.) 

h ' '̂ fo'% 

h ' ̂fo/«gc 

S • "L'Wfo - ̂ Îo> 

S -

"10 " ̂16'Dô l̂o 

1̂1 " ̂15̂ Dô D̂o 

1̂2 1̂7%ô D̂o 

Ljj = ai/Câ â  _ â a,) = P, 
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Fig. 5. A, model for a drum type boiler. 
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h4 = - *2*3) = ̂ 5 

Lis = *1*5/(31*4 - *2*3) = ̂ 4 

1̂6 = (*lhgo - *3)/(*1*4 - *2*3) = 

1̂7 " ̂ Dô fgô f̂go 

1̂8 " (̂ 16 ~ *31̂ /̂ 11 " ̂38 

1̂9 5̂/̂ 11 3̂7 

2̂0 (̂ 12 *34̂ /̂ 11 4̂0 

2̂1 " ̂ 13/̂ 11 " ̂35 

^22 (*33 ~ ̂ 14)̂ 1̂3 3̂6 

2̂3 " ̂ 32̂ 1̂1 " ̂39 

2̂4 (̂ 26 ~ ̂ 11̂ /̂ 11 

2̂5 2̂5/̂ 21 2̂5 

bn̂ /bnn = ̂ o, 
Z.O Z. J_ 

2̂7 (*13 ~ ̂ 24̂ /̂ 23 2̂4 

T = /T-\ ^ o ^ /T> = ^ 

"28 "̂ 22 • "14''"21 *28 

2̂9 *12/°21 2̂7 

"30 °35'°31 *31 

1.31 cŷ /ogi ?29 

L32 (223 "34'/"33 3̂0 

= (b„„ + a„,)/b„, = P̂ , 
JJ J J Z4 J)± 0± 
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3̂4 (̂ 36 

3̂5 *22/̂ 31 3̂3 

3̂6 T̂o/̂ To 

3̂7 4̂ô T̂o 

3̂8 T̂ô '̂̂ To 

= S 

*2 = K3 

= K, 

B, = K, 

B̂  = K. 

B, = K, 

B_ = K, 

B. 
o K„ o 

B„ = K 1 9 

•o = V 
"10 "10 

*11 = Kg 

1̂2 ~ ̂ 11 

13 
a_-/p c V 
32 mp mp mp 

1/p c V = P-
mp mp TTip O 

^5 = a_„/p c V 
33 mo mo mc 
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= a_./p c V = P 
16 34 mp mp mp 10 

®17 " ̂Sl̂ m̂p̂ mp̂ mp " ̂11 

®18 " ̂17 

®19 " ̂13 

®20 " ̂14 

*21 = Pl5 

®22 " ̂16 

®23 " ̂22 

®24 " ̂18 

®25 " ̂19 

®26 " ̂20 

\l " ̂21 

The model developed here is through detailed analyses cf boiler 

processes. A comparison of some features of physical models published in 

the 1970's (15,16,18,19,27) with the present model is given below. 

a) Type of boiler considered: 

Kwan and Anderson (15): drum-type, natural circulation. 

Shang(27): once-through boiler. 

Kwatny et al. (16) and McDonald and Kwatny (19): drum-type, forced 

circulation. 

McDonald (18): drum-type, forced circulation. 

Present: drus-type, forced circulation. 
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b) Heat transfer through waterwall tubes: 

Kwan and Anderson: thermal inertia of tube metal is considered. 

Shang: thermal inertia of tube metal is considered. 

McDonald and Kwatny: thermal inertia of tube metal is not considered. 

McDonald: thermal inertia of tube metal is considered. 

Present: thermal inertia of tube metal is considered. 

c) Fluid flow in waterwall tubes: 

Kwan and Anderson; fluid flow rate is considered constant. 

Shang: fluid flow rate is controlled. 

McDonald and Kwatny: fluid flow rate is considered constant. 

McDonald: fluid flow rate is considered constant. 

Present: fluid flow rate is controlled. 

d) Drum pressure dynamics: 

Kwan and Anderson: drum pressure is not an explicit state variable, 

but may be solved with a combination of model algebraic equations 

and integral equations. 

Shang: (no drum) 

McDonald and Kwatny: neither drum pressure nor steam temperature in 

drum is an output of model equations. 

McDonald: drum pressure is an integral function of the rate of heat 

transfer to circulation fluid and the flow rare of steam out from 

the drum. 

Present: drum pressure is a function of the rate of heat transfer 

to circulation fluid, the steam flow rate, and the feedwater flow 

rate; involving a delay. 
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e) Superheater dynamics : 

Kwan and Anderson: thermal inertia of tube metal is considered. 

Shang: thermal inertia of tube metal is considered. 

McDonald and Kwatny: thermal inertia of tube metal is not considered. 

McDonald: dynamics of superheaters are not considered; throttle 

temperature is considered constant. 

Present: thermal inertia of tube metal is considered. 

C. A Simplified Boiler Model 

A simplified model may be not accurate enough to represent a boiler 

for the long periods required for control. They are useful in predicting 

the variation of boiler variables for shorter periods. One simplification 

is to treat the three superheaters as one section; then the model is reduced 

to that shown in Fig. 6. 

A power plant boiler is usually equipped with an independent feedwater 

control loop such that the feedwater flow rate is equal to the steam flow 

rate. If this COULJLOI is perfect and is considered as part of the boiler 

system, then 

AT.T = AT.T 
""fw —T 

and the model terminals AW and AW can be connected together. Also, if 
t"W i 

the perturbation is small so that may be kept as constant, then AW^ = 0. 

Further simplification of the model can be done on the gas side. If 

fuel and air flow control is perfect such that fuel flow rate is proportional 

to air flow rate, then 

AW, = RfjAWf 
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s + L20 

S + LOQ 

S + B 
+ Aq 

Ul 
vO 

sm 

Fig. 6. Diagram of a simplified model. 
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and Eq. (2-A13) becomes 

Aq = (K - C T R. )AW- (3-Cl) 
2. d. xSi f 

x-rhere is air to fuel ratio. Also» during steady-state conditions; the 

heat transfer to each boiler section is a constant fraction of the total 

heat production in the furnace. If the proportionality is not changed for 

small boiler perturbations, then 

ASsh = "-C3) 

where 

and 

R <1 
gw 

ĥ < 1 

are constants. 

With these relations applied, the boiler model can be reduced to that 

shown in Fié. 7. where the two blocks involving L, ̂ and are also ccni-
jLy i-i. 

bined. Also, the loops enclosed in the dashed box can be reduced as given 

in Appendix C. Then the model becomes that shown in Fig. 8, where 

3̂ 2̂1̂ 22 1̂7̂ 19 • 

The lower S'jmnning function in Fig. 8 can be eliminated. Fig. 9 shows 

the direct result with elimination of this function. 
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AT, 

"12 

ADD 

Ẑï 
1 
+ L 

13 

"13 <) 
Aq gw 

Aw. o— 
f 

[ 1̂6"Li4 
+ 1+ ATm 

L 18 
S + ̂ 20 

AA^ 

o\ 

Fig. 7. Boiler model with simplification on gas processes. 
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he - ̂14 

s + P, 

+ P3S + 

L21S + F3 
s + L20 

"23 
+ '' ATn 

(S+B]̂ 3)(S+L2O) 

ILL 
s + L20 

Fig. 8. A reduced boiler model. 
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AWr 

S + P, 

S + Pi ADr 

/r 

Ll6-L]4 

~ir~ 

gZ+PgS + P̂  

S+F̂  r i-o 

1 
P + ̂ 20 

(S+B̂ X̂S+Ljg) "37 

—> 

F2L23 

(S+B13)(S+L20) 

B17L23 

(S+B13)(S+L20) S+L20 

AT, 
38 

®16̂ 23 
(5+3̂ 3)(S+L̂ Q) 

36 

AA„ 

Fig. 9. Boiler model with lower summing junction 
in Fig. 8 eliminated. 

loot* vith a ' can ne renucea. as snown Kolnw. 

-0-

1̂6̂ 23 
(S+B^3)(S+L2 N 

(S + L̂ 3)(S + L20) 

(S 4- (S 
"20̂  16̂ 23| 

AT 
i 

->« 

I 1 

AT, 
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The model is finally reduced to that shown in Fig. 10. 

y \ 

Aw. 

11 

AA^ 

Fig. 10. The final simplified boiler model. 

5̂ 1̂3 2̂0 

P. = B,„L— - B, 
O J.J JLO 

F- = ̂ 21 

8̂ " ̂21̂ 13 3̂ " ̂21̂ 13 2̂1̂ 22 1̂7̂ 19 

9̂ " ̂ 13'3 " *15̂ 23 *13(̂ 2l"22 1̂7̂ 19̂  " *15̂ 3̂ 
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1̂1 " ̂16 " ̂14 

1̂2 " ̂18 

1̂3 " ̂ 13̂ 18 1̂7̂ 23 

This is a low order model developed on physical principles. 

The model inputs are 

AŴ  = fuel flow rate and 

AÂ  = control valve area, 

and the model outputs are 

ADp = drum pressure, 

AT̂  = throttle temperature, and 

AŴ  = throttle steam flow rate. 
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IV. DATA MEASUREMENT 

Data of boiler dynamic responses are required for computation of model 

parameter constants. These data must be measured from a physical boiler at 

the points corresponding to the inputs and outputs of the model. Since the 

boiler model does not include transfer functions of control equipment and 

measurement equipment, the data recorded should be the direct reproduction 

of actual signals. In case distortion caused by measurement equipment is 

significant and only control signals are available, the transfer functions 

of the control and measurement equipment must be connected to the corre­

sponding terminals of the boiler model. The model including the transfer 

functions of equipment should be used with the data for computing the 

parameter constants. This may not increase the number of unknown model 

parameters, since the transfer functions of the measurement equipment and 

the control equipment and their constants may be determined beforehand. 

In making experimental tests, it must be carefully observed that the 

boiler system is in steady-state before the inputs are perturbed and the 

input and the output signals are recorded. It is desirable to obtain sets 

of boiler response data with each individual input perturbed as well as 

with a combination of several inputs perturbed simultaneously so that the 

sensitivity of individual inputs to the boiler dynamics and their combined 

effects on the system performances can be understood. The data set for 

parameter identification computation should include the following infor­

mation: 
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Data for model inputs 

1) fuel flow rate, 

2) air flow rate, 

3) control valve area, 

4) feedwater flow rate, and 

5) flow rate of circulation fluid. 

Data for model outputs 

1) throttle steam flow rate, 

2) throttle steam temperature, 

3) drum pressure, and 

4) rate of heat flow to reheater and economizer sections. 

ASME Performance Test Code and ASME Power Test Code may be followed to obtain 

the test data. 

Fuel flow rate, air flow rate, control valve area, feedwater flow rate, 

throttle steam flow rate, and drum pressure generally can be measured with 

the equipment normally installed in the plant. The rate of heat flow to the 

reheater and economizer can not be measured directly. It has to be computed 

from the data measured for 

1) temperature of the flue gas flowing into the reheater section, 

2) temperature of the flue gas flowing into the economizer section, 

3) mass floT.-: rate of the flus gas into the veV-eaLer sections, and 

4) mass flow rate of the flue gas into the economizer section. 

The rate of hear flow into the respective sections then can be computed. 

with Eqs. (2-A8) and (2—A9). The instrument for measuring these quantities 

is usually not installed in the plants. 
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The flow rate of circulation fluid usually can not be measured. 

Instruments have to be installed to make the test. It will be convenient 

if the transfer function relating the circulation fluid flow rate and the 

signal of the circulation pump driving motor input is obtained before the 

test. In this case the transfer function can be connected to the boiler 

model and the motor input becomes an input to the boiler, as shown in 

Fig. 11, where AM̂  is the motor input. 

AMT 

AWfO 

AŴ O. 

AÂ O-

O* G(s) 

AWf(P-

AWj) 
—$-o-

-X» 1 + sT 

•>0 AT, 

-K) ADjj 

Aq 
re 

AŴ  

Fig. 11. Inputs and outputs of boiler 

The throttle steam flow rate is proportional to the turbine first 

stage shell pressure corrected with the throttle temperature \2,26). À 

common practice is that the first stage pressure is measured and corrected 

to produce the data of steam flow rate. However, there is a time lag 

between the steam flow through the throttle valve and the detected variation 

of first stage pressure. The lag is mainly due to the existence of the 
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steam chest and the connecting pipe between the control valves and the 

turbine first-stage shell, as shown in Fig. 12. 

STEAM 
FLOW 

HIGH 
STEAM _ PRESSURE > 
CHEST TURBINE 

VALVE 
CONTROL 

Fig. 12. Time lag exists between control valve 
steam flow and turbine first stage pressure. 

This time lag appearing in the recorded data influences the results of 

identification computation if it is not properly treated. It has been 

suggested that this lag can be represented by a first order delay (13). A 

first order transfer function can be connected to the output AŴ  to repre­

sent this lag, as shown in Fig. 11, where AŴ  is the actual steam flow rate 

 ̂  ̂  ̂̂ 
CLLIU LUC U1C:0.;3U.1. CU ouco-iu j-a-c-v.* 

Power plants are generally equipped with automatic controls such that 

the feedwater flow rate is controlled to equal the rate of steam flow out of 

the drum, and the air flow rate is controlled proportional to the fuel flow 

rate. If the controls are perfect, the information about feedwater flow 

rate and air flow rate become unnecessary. However, it is more desirable 

to have this information measured so that the actual situation is understood. 

The test data should be recorded for a period of at least twenty 

minutes, as it sometimes takes about twenty minutes for a major thermal 
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transient to subside. Since the superheater controls are not includê  in 

the boiler model, superheater spray should be kept off during the experi-

meiic. 

The boiler dynamic data should be recorded on analog magnetic tapes 

during the test so that they can be digitized later for digital computer 

application. It is trivial to mention that an experiment daily should be 

kept on file for the test. However, a portion or all of the data recorded 

will lose their value if the following information is not available: 

a) the environment pressure during the experiment must be known, 

b) the scale factors for all the records must be known. 

c) base lines which show steady-state levels of boiler variables must 

be shown clearly in all records, 

d) the physical values which the base lines represent must be known, 

e) the polarity of the recording voltage must be known, 

f) the formal recording on all data must start at the same time, and 

g) the location and length of each set of data on the tapes must be 

known. 

Since a boiler is a large system and it is not always available for 

experiments, cars must be taken to obtain this information in doing the 

experiment. 
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V. CONCLUSIONS 

A linear mathematical model for a thermal power plant drum type boiler 

has been developed. This model is intended for multivariable control 

studies on the boiler. It has included the pressure and temperature 

aspects of a boiler system. The dynamics of these pressure and temperature 

variables are important to control studies. Unlike the boiler models 

developed previously and discussed in Chapter I, in which some boiler con­

trols are considered as a portion of the boiler, the boiler model developed 

here does not include controls. Some simplified boiler models are also 

presented. For these models, some external controls are included in the 

models so that assumptions can be made with the feedwater flow rate and the 

air flow rate. The simplified model may not be suitable for boiler control 

studies, but they may be used for an initial study of boiler dynamics. 

The model is presented in closed compact form in the complex frequency 

domain, showing clearly the relationships among the boiler variables. Care 

has been taken in che model development thac the boiler processes are 

described by a suitable set of boiler variables which not only represent 

the important boiler properties but also provide good relationships between 

the boiler components. Since the model is developed from physical prin­

ciples, it can be used to represent boilers of the same configuration. 

To compute the model constants for a particular boiler, dynamic input-

output response data measured from experimental tests on the boiler are 

required to fit the model. The parameter identification technique is 

available for computation of the sodel constants. Initial estimates of the 

parameter constants, which are required for the parameter identification 
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program, can be calculated from boiler design data. The relations 

between the model parameters and the physical quantities of the boiler 

have bssr. defined in the model development. The computed model parameter 

values are the effective dynamic constants of the boiler processes which 

give the corresponding input-output relations. 

The dynamic response data for the inputs and the outputs of the boiler 

model are necessary for computation of the model constants. It is desirable 

if data are available for the other boiler variables so that the parameter 

computation can also be done on a partitioned model. In the measurement 

of the transient pressure and the transient temperature, care must be taken 

in visualizing the possible time delay appearing in the recorded signal 

which is usually caused by the sensing the measurement system. These 

delays should be properly corrected for application to parameter identifi­

cation computation. 
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APPENDIX A. TRANSFER FUNCTION FOR UATERWALL TUBE WALL 

DIVIDED INTO THREE LAYERS 

Equation (2-D4) can be written as 

d 
dt 

AT̂  

ATg 
= 

AT̂  

p 1 

02=2̂ 2 

'̂"2 

Pl=lVj 

(Â ĥ  + ̂ 2̂} "̂̂ 2 

2̂̂ 2 

03̂ 3̂ 3 

-1 

P3C3V3 

Aq 
gw 

Aq 
Dw 

P2̂ 2̂ 2 

-*3̂ 3 

3̂̂ 3̂ 3 

AT, 

AT, 

AT, 

(A-1) 

Equation (2-E6) is 

= K19AT3 + >=18% - K20% (A-2) 

Combining Eqs. (A-1) and (A-2), eliminating Aq 
Dw 

d 
dt 

AT, 

AT, 

AT, 
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91=1*1 

0 

0 

0 0 Aq 
gw 

0 0 AŴ  

00 

So 

1 

93=3*3 3̂=3*3_ 

1 

(A-3) 

where Aq , AW , and AD are the inputs to this subsystem, and Eq. (A-2) 
gw D U 

is the output equation. 

To express this subsystem in the form of transfer functions, the 

state-space equations can be transformed to 

AT^(S) = 

s + Vi 

r A h 
^ ^  AT^(S) + . 1 _ Aq_ (s) 

91=1*1 : ĝw 
(A-4) 

A,h, + A^h. 
s + 11 2 2 

2̂=2*2 

1̂̂ 1 2̂̂ 2 
AT (S)  + -4-^ AT,(S) 

2̂=2*2 1 2̂=2*2 3 
(A-5) 

AT„(S) = r. 

s + 
A_n_ -r rv_ _ I ù_C,v_ z 
j J xy 

Ah K 
 ̂̂  AT.(s) - . AU_(s) 

3̂=3*3 

J J J 
U_C„v _ u 
J J J 

^ 2 o _ , _ , i  

] P3C3V3 
(A-6) 

Substitute Eq. (A-4) into Eq. (A-5) and rearrange. 

AT,(s) = 
2̂=2*2 

2 / ̂ 1̂ 1 •̂ l̂ l "*• *2̂ 2 s + I — T :—:—— \ s + 

1 
V 2̂=2*2 I 1̂=1*1̂ 2=2*2 
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2̂̂ 2 
2̂̂ 2 W 

2̂ 2̂ 2 

s + 
Aj"! "2"2 

2̂̂ 2̂ 2 

PiC-V I Â h 
W : ) + ^ A V = )  

(A-7) 

Substitute Eq. (A-7) into Eq. (A-6) and rearrange, 

1 T.(s) = 
s'' + P + PgŜ  + PjS + 

5̂(8 + 

where 

-(ŝ  + P,s2 + PgS + P,)CP̂ „AWj,(s) - PuADpCs)̂  (A-8) 
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APPENDIX B. TRANSFER FUNCTION FOR A SUPERHEATER TUBE WALL 

DIVIDED INTO THREE LAYERS 

From Eq. (2-D4) 
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Equation (2-E5) can be written as 
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"Dsn 14 j 1 j V 13 1) 
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Substitute Eq. (B-2) into Eq. (3-1) 
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where Aq̂ ,̂ AŴ , AD̂ , AT̂  ̂are the inputs and Eq. (B-2) is the output 

equation. 

Following the same approach as in Appendix A, the following result 

is obtained, 
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APPENDIX C. REDUCTION OF TRANSFER FUNCTION BLOCKS 

To reduce the blocks 

AD, 
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The left loop can be written as 
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Subtract AD̂ (s) from both sides. 

s 1'$̂ , - TTT̂  • 

the original blocks become 
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